Forumson

tam sayılarla ilgili sorulara ve cevaplar

Ödevler Katagorisinde ve MaTematik Forumunda Bulunan tam sayılarla ilgili sorulara ve cevaplar Konusunu Görüntülemektesiniz.->DOĞAL SAYILAR VE TAM SAYILAR ÇÖZÜMLÜ SORULAR forumson.com - tam sayılarla ilgili sorulara ve cevaplar 1.soru:8 . 107 + 5 ...


Reklamı Kapat

Geri git   Forumson > Eğitim - Üniversiteler - Sınavlar > Ödevler > MaTematik

Alt 11-17-2009, 11:20   #1 (permalink)
ForumSon Webmaster

Yasal UyarıArkadaşlar Lütfen Konulara Cevap Yazalım iyi veya Kötü Değerlendirelim Emeğe Saygı!
 
Korax - ait Kullanıcı Resmi (Avatar)
Bilgiler
Üyelik tarihi: Jan 2008

Yaş: 31
Mesajlar: 20,167
Konuları: 18471

Tesekkür: 7
272 Mesajina 267 Tesekkür Aldi Üye No: 1
REP Gücü : 1000
REP Puanı : 11717
Korax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond repute
Seviye: 80 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Aktiflik: 2791 / 2791
Güç: 6722 / 38707
Deneyim: 76%
İletisim
Korax - MSN üzeri Mesaj gönder

Standart tam sayılarla ilgili sorulara ve cevaplar

 

DOĞAL SAYILAR VE TAM SAYILAR ÇÖZÜMLÜ SORULAR
forumson.com - tam sayılarla ilgili sorulara ve cevaplar 1.soru:8 . 107 + 5 . 103 + 4. 10 sayısı aşağıdakilerden hangisidir?

Çözüm:
8 . 107 + 5 . 103 + 4. 10 = 8 . 107 + 0 . 106 + 0 . 105 + 0 . 104 + 0 . 103 + 0 . 102 + 4 . 10 + 0 . 100 şeklinde yazılabilir. Öyleyse sayı 80005040’tır.
2.soru:Üç ile tam bölünebilen iki basamaklı doğal sayıların toplamı kaçtır?
Çözüm:
Aranan sayı
A = 12 + 15 + 18 + … + 96 + 99’dur.
A = 3 . (4 + 5 + 6 + … + 32 + 33)
=
= 3 . (33 . 17 – 3 . 2) = 3 . (561 – 6)
= 3 . 55 = 1665
3.soru:8 + 13 + 18 + … + 98 + 103 – x = 103 ise x kaçtır?
Çözüm:
Toplamadaki ardışık terimlerin farkı 5 olduğundan A = 8 + 13 + 18 + … + 98 + 103 toplamında terim vardır.
4.soru:8 tane sayının aritmetik ortalaması 15’tir. Bu sayılara 21 ve 29 katılsaydı aritmetik ortalama kaç olurdu?
Çözüm:
Bu sekiz sayının toplamı
8 . 15 = 120’dir.
olur.
5.soru:Ardışık 6 tane doğal sayının toplamı bu sayıların en küçüğünün 7 katına eşittir. Bu sayıların en büyüğü kaçtır?
Çözüm:
Ardışık 6 doğal sayı; x x + 1 x + 2 x + 3 x + 4 x + 5 olsun.
x + (x + 1) + … + (x + 5) = 7x
6x + 15 = 7x Þ x = 15 olur.
Bu sayıların en büyüğü
x + 5 = 15 + 5 = 20’dir.
6.soru:Rakamları 0 ve 1’den farklı olan dört basamaklı abcd sayısının rakamlarının sayı değerleri birer azaltılırsa sayı kaç azalır?
Çözüm:
(abcd) = 2376 olsun.
Bu sayının rakamlarının sayı değerleri birer azaltılırsa sayı 1265 olur.
Fark 2376 – 1265 = 1111’dir.
7.soru:İki basamaklı (ab) sayısının dört katından (ba) sayısının 3 katı çıkarıldığında fark 218 oluyor. b = 3 ise a kaçtır?
Çözüm:
(ab) = 10a + b ve (ba) = 10b + a’dır. b = 3 ise
4 . (10a + 3) – 3(10 . 3 + a) = 218
40 . a + 12 – 90 – 3a = 218
37 . a = 296
a = 8 olur.
8.soru:a b c ardışık tek sayma sayılarıdır. a . c = 357 ise b + c kaçtır?
Çözüm:
Ardışık üç tek sayı; a = x – 2 b = x c = x + 2 olsun.
a . c = 357 Þ (x – 2) . (x + 2) = 357
x2 – 4 = 357
x2 = 361 = 192
Buradan x = 19 bulunur.
Buna göre; b = 19 c = 21 ve b + c = 40 olur.
9.soru:Toplamları 57 olan iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 5 klan 3 oluyor. bu iki sayının çarpımı kaçtır?
Çözüm:
Büyük sayı x ise küçük sayı (57 – x) olur.
x = (57 – x) . 5 + 3 bölme eşitliğinden
x = 48 bulunur.
57 – x = 57 – 48 = 9 dur.
Bu iki sayının çarpımı 48 . 9 = 432 olur.
10.soru:İki basamaklı ve birbirinden farklı beş tane sayma sayısının toplamı 451’dir. Bu sayıların en küçüğü en az kaç olabilir?
Çözüm:
Bu sayılardan birinin en küçük olması için diğerlerinin en büyük olması gerekir.
Sayılardan birinin en küçük değeri x ise
99 + 98 + 97 + 96 + x = 451 Þ x = 61’dir.
11.soruört basamaklı 7a3a sayısı 6 ile tam bölündüğüne göre a hangi rakamdır?
Çözüm:
(7a3a) sayısının 2 ve 3’e tam bölünmesi gerekir.
t Î N+ olmak üzere
7 + a + 3 + a = 3 . t ve a çift olmalıdır.
10 + 2a = 3 . t eşitliği a = 4 için sağlanır.
12.soru:1! + 3! + … + 8! + 9! Sayısının 15 ile bölünmesindeki kalan kaçtır?
Çözüm:
5! = 1 . 2 . 3 . 4 . 5 sayısının çarpanları sırasında 3 ve 5 bulunduğundan bu sayı 15 ile tam bölünür. Aynı nedenle 6! 7! 8! Ve 9! sayıları da 15 ile tam bölünür.
Buna göre sadece 1! + 2! + 3! + 4! Toplamının 15 il bölünmesindeki kalanı bulmalıyız.
1! + 2! + 3! + 4! = 1 + 2 + 6 + 24 = 33 = 15 . 2 + 3 sayısının 15 ile bölünmesindeki kalan 3 olur.
13.soru:Ardışık üç sayma sayısının karelerinin toplamı 149 olduğuna göre bu üç sayının toplamı kaçtır?
Çözüm:
Bu sayılar; x – 1 x ve x + 1 olsun.
(x – 1)2 + x2 + (x + 1)2 = 149
3×2 = 147
x2 = 49
x = 7
Bu üç sayı; 6 7 ve 8’dir.
6 + 7 + 8 = 21’dir.
14.soru2a3)4 – (12a)4 = (40)5 ise (2a3)4 + (12a)4 toplamı kaçtır?
Çözüm:
(2 . 42 + a . 4 + 3) – (1 . 42 + 2 . 4 + a) = 4 . 5 eşitliğinden a = 3 bulunur.
(233)4 + (123)4 = (1022)4 ve
(1022)4 = 1 . 43 + 0 . 42 + 2 . 4 + 2 . 40
= 74 olur.
15.soru:6 ve 7 sayılarına bölündüğünde 5 kalanını veren üç basamaklı en küçük sayma sayısının en az kaç fazlası 9 ile tam bölünür?
Çözüm:
A = 6x + 5 = 7y + 5 ise 6 ile 7’nin ekok’u 42 olduğundan;
A = 42 . t + 5’tir. A’nın en küçük üç basamaklı değeri t = 3 için 131’dir.
131 sayısının rakamlarının toplamı 1 + 3 + 1 = 5 ve 9 – 5 = 4 olduğundan 131’in 4 fazlası 9 ile tam bölünür.
16.soru:3 basamaklı abc doğal sayısı 6 ile bölünüyor. ise bac sayısı aşağıdakilerden hangisine tam bölünmez?
Çözüm:
(abc) sayısı 6 ile tam bölündüğünde c çifttir. ve c çift koşulunun sağlanması için c = 2 olmalıdır. Bu durumda
(abc) = 642 ve (bac) = 462 olur.
462 = 2 . 3 . 7 . 11 sayısının asal çarpanları arasında 22 . 3 bulunmadığından 462 sayısı 12 ile tam bölünmez.
17.soru:540 . x = b2 eşitliğinde x ve b sayma sayılarıdır. bu koşula uyan b sayılarının en küçüğü kaçtır?
Çözüm:
540 = 22 . 33 . 5 tir.
22 . 33 . 5 . x = b2 eşitliğinde x en az 3 . 5 olmalıdır. Buna göre
22 . 33 . 5. 3 . 5 = b2
22 . 34 . 52 = b2 Þ (2 . 32 .5)2 = b2
b = 2 . 32 . 5 = 90 olur.
18.soru:12 . 50 . 9 sayısını tam bölen kaç tane sayma sayısı vardır?
Çözüm:
12 = 22 . 3 50 = 2 . 52 ve 9 = 32 olduğundan 12 . 50 . 9 = 23 . 52 . 33 olur.
Bu sayıyı tam bölen pozitif sayılar sayının asal çarpanlarının üslerinin birer fazlalarının çarpımı kadardır.
(3 + 1) . (2 + 1) . (3 + 1) = 48’dir.
19.soru:a m n sayma sayılarıdır. a = 9m + 8 = 6n + 5 koşullarını sağlayan 300’den büyük en küçük a sayma sayısı kaçtır?
Çözüm:
a + 1 = 9m + 9 = 6n + 6 olduğundan a + 1 sayısı hem 9 hem de 6 ile bölünebileceğinden 18 ile de tam bölünür. 300’den büyük ve 18’in tam katı olan ilk sayı 306 olduğundan
a + 1 = 306 Þ a = 305’tir.
20.soru:108 ve 180 sayılarının ikisini de tam bölen en büyük sayma sayısı A ikisine de tam bölünen en küçük sayma sayısı B ise A + B kaç olur?
Çözüm:
A sayısı 108 ile 180’in ortak bölenlerinin en büyüğü; B sayısı ortak katlarının en küçüğüdür.
108 = 22 . 33 ve
180 = 22 . 32 . 5 olduğundan;
A = 22 . 33 . 5 = 540 B = 22 . 32 = 36 ve
A + B = 576 olur.
21.soru:195 ve 501 sayıları en büyük hangi sayma sayısı ile bölünürse kalanlar sıra ile 15 ve 21 olur?
Çözüm:
195 – 15 = 180 ve 501 – 21 = 480 olduğundan; aranan sayı 180 ve 480’i tam bölen en büyük sayma sayısıdır. Aranan sayı
Þ E.B.O.B. (180; 480) = 22 . 3. 5
= 60’tır.
22.soru:-2 . (3 – 5) – [(5 – 13) : (-2) – (-2)3] işleminin sonucu nedir?
Çözüm:
-2 . (2 – 5) – [(5 – 13) : (-2) – (-2)3]
= -2 . (-2) – [(-8) : (-2) – (-8)]
= 4 – [4 + 8] = -8
23.soru-4)5 + (-4)5 + (-4)5 + (-4)5 = (-1)n . 2m ise aşağıdakilerden hangisi doğrudur?
Çözüm:
(-4)5 + (-4)5 + (-4)5 + (-4)5 = (-1)n . 2m
olduğundan n tek ve m = 12’dir.
24.soru:6 tabanında (53)6 sayısı 4 tabanında nasıl yazılır?
Çözüm:
(53)6 = 5 . 6 + 3 = 33’tür. Yandaki ardışık bölmelere dikkat ediniz. Yuvarlak içine alınmış rakamlar ters sırada yazılırsa 33 sayısı 4 tabanına göre yazılmış olur. Buna göre 33 = (201)4 olur.
25.soru123)5 sayısından büyük (241)5 sayısından küçük olan kaç tane doğal sayı vardır?
Çözüm:
(123)5 < x < (241)5
(52 + 2 . 5 + 3) < x < (2 . 52 + 4 . 5 + 1)
38 < x < 71
Bu koşulu sağlayan 70 – 38 = 32 tane doğal sayı vardır.
26.soru:1001010 sayısı aşağıdakilerden hangisidir?
Çözüm:
1001010 = 1 . 106 + 0 . 105 + 0 . 104 + 1 . 103 + 0 . 102 + 1 . 10 + 0 . 100
= 106 + 103 + 10
27.soru:1 + 4 + 7 + 10 + … + 52 + 55 + 58 toplamı kaçtır?
Çözüm:
Toplamadaki ardışık terimlerin farkı 3 olduğundan
A = 1 + 4 + 7 + 10 + … + 52 + 55 + 58 toplamında
terim vardır.
28.soru:Her biri üç basamaklı ve birbirinden farklı dört doğal sayının toplamı 716’dır. Bu sayıların en büyüğü en fazla kaç olabilir?
Çözüm:
Sayılardan birinin en büyük olması için diğer üçünün en küçük olması gerekir.
100 + 101 + 102 + x = 716
x = 413 bulunur.
29.soruört basamaklı 1aa2 sayısı 12 ile tam bölündüğüne göre bu sayının 9 ile bölümündeki kalan aşağıdakilerden hangisi olabilir?
Çözüm:
(1aa2) sayısının 12’ye tam bölünebilmesi için 4’e ve 3’e bölünmesi gerekir.
Sayının 4’e bölünebilmesi için a sayısı 13579 olabilir. Sayının 3’e bölünebilmesi için a sayısı 369 olabilir. Öyleyse sayı 1332 veya 1992 olacağından 9 ile bölümünden kalan 0 veya 3 olabilir.
30.soru:Ardışık üç tek sayma sayısının karelerinin toplamı 251 olduğuna göre bu üç sayının aritmetik ortalaması kaç olur?
Çözüm:
Bu sayılar; x – 2 x x + 2 olsun.
(x – 2)2 + x2 + (x + 2)2 = 251
x2 = 81 &THORN; x = 9
Aranan sayılar 7911 dir.
Bu sayıların aritmetik ortalaması
dur.
31.soru:İki tabanında yazılmış üç basamaklı sayıların en büyüğü ile en küçüğünün toplamı iki tabanında nasıl yazılır?
Çözüm:
(111)2 + (100)2 = (1011)2
32.soru:8 ile bölündüğünde 7 kalanını veren üç basamaklı en küçük doğal sayı a olsun. Aşağıdakilerden hangisi 9 ile tam bölünür?
Çözüm:
a = 8 . k + y sayısında; k = 12 için a = 103 olur. 103 sayısının 9 ile bölümündeki kalan 1 + 3 = 4 tür. a2 sayısının 9 ile bölümündeki kalan 42 = 16 sayısının 9 ile bölümündeki kalana eşittir. Bu kalan da 1 + 6 = 7 dir.
7 + 2 = 9 olduğundan a2 + 2 sayısı 9 ile tam bölünür.
33.soru2n + 8) + (2n + 12) + (2n + 16) + … + (2n + 40) = 18n + x ise x kaçtır?
Çözüm:
olduğundan toplamada 9 terim vardır.
Buna göre
2n . 9 + (8 + 12 + … + 40) = 18n + x
x = 8 + 12 + … + 40 = dır.
34.soru:5 tane ardışık tek doğal sayının toplamı 55’tir. Bu sayıların en küçüğü kaçtır?
Çözüm:
Bu sayılar
x – 4 x – 2 x x + 2 x + 4 olsun.
5x = 55 &THORN; x = 11 ve x – 4 = 11 – 4 = 7 dir.
35.soru:3 basamaklı a3b sayısının onlar ve yüzler basamaklarındaki rakamları yer değiştirdiğinde sayının değeri 360 azalıyor. a kaçtır?
Çözüm:
(a3b) = 100a + 30 + b
(3ab) = 300 + 10a + b dir.
(100a + 30 + b) – (300 + 10a + b) = 360
90a = 630
a = 7
36.soruabc) üç basamaklı bir doğal sayıdır. 10a + b = 74 ve a + c = 10 ise (bac) sayısı aşağıdakilerden hangisidir?
Çözüm:
10a + b = 74 ise; (ab) = 74 a = 7 ve b = 4 tür.
a = 7 ve a + c = 10 ise c = 3 olur.
(bac) = 473 tür.
37.soru:a bir sayma sayısı ve b çift sayma sayısıdır. Aşağıdakilerden hangisi daima tek sayıdır?
Çözüm:
2a çift b çift ve 5 tek sayı olduğundan;
2a + b + 5 tek sayma sayıdır.
38.soru: Üç basamaklı abc doğal sayısı 15 ile tam bölünüyor. a + b + c en fazla kaç olabilir?
Çözüm:
Sayı hem 5 hem de 3 ile tam bölünebildiğinde c = 5 ve a + b + 5 = 3 . k = 21 olmalıdır.
39.soru:8! = 2n . 3m . 35 ise m + n kaçtır?
Çözüm:
8! = 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 = 27 . 32 . 5 . 7 dir.
27 . 32 . 5 . 7 = 2n . 3m . 35 ise
n = 7 ve m = 2 dir.
m + n = 9 olur.
40.soru:2n . 32 . 5 = x eşitliğinde n ve x birer sayma sayısıdır. x sayısını tam bölen 30 tane doğal sayı olduğuna göre n kaçtır?
Çözüm:
(n + 1) . (2 + 1) . (1 + 1) = 30 &THORN; n = 4
41.soru:x sayısı 7 ile bölündüğünde bölüm y kalan 5’tir. y sayısı 6 ile bölündüğünde kalan 4’tür. x sayısının 42 ile bölümündeki kalan kaçtır?
Çözüm:
sisteminden
x = 7 . (6 . t + 4) + 5
x = 42 . t + 33 bulunur.
Buna göre kalan 33 tür.
42.soru: kesri n ile sadeleştirildiğinde kesri elde ediliyor. a ve b aralarında asal ise n’nin alabileceği en büyük değer kaç olur?
Çözüm:
&THORN; n = E.B.O.B. = 22 . 32 . 5
= 180 dir.
olur.
43.soru:Boyutları 12 cm ve 20 cm olan dikdörtgensel bölgelerden en az kaç tanesi yan yana konarak bir karesel bölge oluşturulur?
Çözüm:
12 ve 20 sayılarının E.K.O.K.’u 60 tır.
Karenin bir kenarı 60 cm olur.
tane düzlemsel bölge.
44.soru:a b c negatif tamsayılardır.
olduğuna göre a’nın en büyük değeri nedir?
Çözüm:
2b = 5c &THORN; dir.
a = 3b &THORN;
tir.
Buna göre
c = 2k ise; b = 5k a = 15k olur.
a negatif tamsayı olduğundan; a nın en büyük değeri k = -1 için a = 15 . (-1) = -15 tir.
45.soru-3)2 + (-3) + (-5-2) : (-1) işleminin sonucu nedir?
Çözüm:
(-3)2 + (-3) + (-5-2) : (-1) = 9 – 3 + (-7) : (-1)
= 9 – 3 + 7 = 13
46.soru:a ve b birer tamsayıdır. < 5 ve -3 £ b < 2 olduğuna göre 2a – b’nin en büyük değeri ne olur?
Çözüm:
< 5 Û -5 < a < 5 tir.
-5 < a < 5 ve -3 £ b < 2 olduğundan;
2a – b’nin en büyük olması için a’nın en büyük ve b’nin en küçük olması gerekir.
a = 4 ve b = -3 alınarak
2a – b = 2 . 4 – (-3) = 11 bulunur.
47.soru: a tabanında (68) biçiminde yazılan bir sayı 2a tabanında nasıl yazılır?
Çözüm:
(68)a = 6a + 8
= 3 . (2a) + 8 = (38)2a
Not:
a yerine herhangi bir sayı seçilerek problem çözülebilir. Örneğin a = 10 olsun.
(68)10 = (?)20 olur. Yandaki bölmeden (68)10 = (38)20 olur.
48.soru:A = 6 . 105 + 2 . 102 + 3 B = 87532 olduğuna göre A + B kaç olur?
Çözüm:
A = 6 . 105 + 2 . 102 + 3 = 600203 ve
B = 87532 olduğundan A + B = 687735 tir.
49.soru:Ardışık n tane çift sayının en büyüğü en küçüğünden 12 fazladır. n kaçtır?
Çözüm:
n tane ardışık çift sayı
x x + 2 x + 4 x + 2 (n – 1) olsun.
[x + 2(n – 1) – x = 12 &THORN; n = 7 dir.
50.soru:Üç basamaklı abc doğal sayısının birler ve yüzler basamaklarındaki rakamlar yer değiştirince sayı 693 azalıyor. a + c = 9 ise a kaçtır?
Çözüm:
(abc) = 100a + 10b + c
(cba) = 100c + 10b + a dır.
(100a + 10b + c) – (100c + 10b + a) = 693
99(a – c) = 693
a – c = 7 dir.
&THORN; a = 8 dir.
51.soru:Ardışık üç tane tek sayma sayısı ile birbirinden farklı üç tane çift sayma sayısının toplamı 61’dir. Bu çift sayıların en büyüğü en fazla kaç olur?
Çözüm:
Bu sayılardan; tek olanlar 2x + 1 2x + 3 2x + 5; çift olanlar 2t 2m 2k olsun. 2k sayısının en büyük olması için diğer sayılar en küçük olmalıdır. Öyleyse diğer sayılar; 1 3 5 2 4 tür.
1 + 3 + 5 + 2 + 4 + 2k = 61 ise
2k = 46 olur.
52.soru:Beş basamaklı 1a13b sayısı 6 ile tam bölünüyor. b > a ise a . b en fazla kaç olur?
Çözüm:
6 ile bölünebilen bu sayı 2 ve 3 ile bölünebilir. b en büyük 8 olur.
1a138 sayısının 3 ile bölünebilmesi için
1 + a + 1 + 3 + 8 = a + 13 toplamının 3 ile bölünebilmesi gerekir. a < 8 olacağından a en fazla 5 ve a . b en fazla 5 . 8 = 40 olur.
53.soru6! + 7) . (5! + 6) çarpımının 9 ile bölümündeki kalan nedir?
Çözüm:
5! = 120 (5! + 6) = 126 sayısı 9 ile tam bölünür.
Buna göre (6! + 7) . (5! + 6) çarpımı 9 ile bölünür (kalan 0 dır)
54.soru:Bir sayma 24 ile bölümündeki kalan 17 ise bu sayının 8 ile bölünmesindeki kalan ne olur?
Çözüm:
a = 24 . x + 17 = 8 . 3x + 8 . 2 + 1 dir.
a = 8 . (3x + 2) + 1 olduğundan sayının 8 ile bölümünden kalan 1 dir.
55.soru:aab ve aba üç basamaklı doğal sayılardır. aab – aba = 27 ve a + b = 9 ise b kaçtır?
Çözüm:
aab = 110a + b
aba = 101a + 10b dir.
110 + b – (101a + 10b) = 27
9(a – b) = 27 &THORN; a – b = 3 olur.
&THORN; b = 3 tür.
56.soru:810 = a3 . b eşitliğinde a ve b birer doğal sayıdır. a > 1 olduğuna göre a + b kaç olur?
Çözüm:
810 = 34 . 2 . 5 = 33 . 30 = a3 . b
Buna göre; a = 3 b = 30
a + b = 33 tür.
57.soru:63 . 22 sayısını tam bölen kaç tane sayma sayısı vardır?
Çözüm:
63. 22 = 23 . 33 . 22 = 25 . 33 tür.
Bölenlerin sayısı
(5 + 1) . (3 + 1) = 24 tür.
58.soru:Ali ilacını 10 saatte bir Veli ise 16 saatte bir içiyor. Salı günü saat 15:00’te birlikte ilaç içtiklerine göre hangi gün ve hangi saatte ilk defa birlikte ilaç içerler?
Çözüm:
10 ile 16’nın E.K.O.K.’u 80 dir. bir gün 24 saat olduğundan; yandaki bölme işlemin göre 3 gün 8 saat sonra Cuma günü 23:00’te yine birlikte ilaç içerler.
__________________
Atılan Romlardan Forumson Ekibi Sorumlu Değildir Lütfen Cihaz Bilgilerini Okuyup Rom Atınız Cihazınıza
Korax isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla

Sponsored Links
Cevapla

Bookmarks

Tags
cevaplar, ilgili, sayilarla, sayılarla, sorulara, tam, ve


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler
Stil

Yetkileriniz
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı
Trackbacks are Kapalı
Pingbacks are Açık
Refbacks are Açık

Gitmek istediğiniz klasörü seçiniz

Benzer Konular
Konu Konuyu Başlatan Forum Cevaplar Son Mesaj
köklü sayılarla ilgili son 10 yılda çıkan sorular Yaso Siz Sorun Biz Cevaplayalim(Maximum 5-10dk) 0 11-14-2009 08:47
Diyabet hastalığının çocuklara etkisi ile ilgili soru ve cevaplar Korax Çocuk Sağlığı ve Bakımı 0 10-22-2009 10:32
Çocuklarda görülen şeker hastalığı ile ilgili soru ve cevaplar Korax Çocuk Sağlığı ve Bakımı 1 10-22-2009 10:27
<<Genelde Sorulan Sorulara Cevaplar<< ImmorTaL Knight Online Genel 0 03-12-2009 19:12
Sorulara Cevaplar tuberk Knight Online Sorun ve Çözümleri 3 12-11-2008 00:21


Bütün Zaman Ayarları WEZ +3 olarak düzenlenmiştir. Şu Anki Saat: 08:39 .


Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2014, Jelsoft Enterprises Ltd.

Website Statistics
Toplist
Sitemiz bir forum sitesi olduğu için kullanıcılar her türlü görüşlerini önceden onay olmadan anında siteye yazabilmektedir, bu yazılardan dolayı doğabilecek her türlü sorumluluk yazan kullanıcılara aittir, yine de sitemizde yasalara aykırı unsurlar bulursanız doganinternet@hotmail.com email adresine bildirebilirsiniz, şikayetiniz incelendikten sonra en kısa sürede gereken yapılacaktır.
Report Abuse, Harassment, Scamming, Hacking, Warez, Crack, Divx, Mp3 or any Illegal Activity to doganinternet@hotmail.com

DMCA.com